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ABSTRACT

Field trials when observations are correlated with those in neighboring

or nearby plots in one and two dimensions are analyzed using simultaneous

autoregressive models. The relationships between the maximum likelihood

solutions and the corresponding well-known Papadakis estimators are clarified

and it is shown that the maximum likelihood solutions are, for specific types

of designs, easier to obtain directly then by iterating on the Papadakis %

estimator as has been suggested. A simulation study compares the different

models and methods for one and two dimensions. r-....

Note: In spite of its earlier number, MRC Technical Summary Report No. 2650

is a sequel to this report. ,
.
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Key Words: Correlated plot yields, Maximum likelihood estimator,
Papadakis estimators, Simultaneous autoregressive field model

Work Unit Number 4 (Statistics and Probability)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and
the Wisconsin Alumni Research Foundation via the UW Graduate School.

-, • -. * . . . .. .... ,. . -.. r .... %.... -. ---



. .. . . . . , . .. - ' W T . . - - _ ,

.4

A"

SIGNIFICANCE AND EXPLANATION

The problem of analyzing data from field trials when observations in

neighboring or nearby plots are correlated is an important one which has been .'I

extensively examined over the years. In 1937, Papadakis suggested a sensible

but mysterious treatment estimator form whose role, and relationship to the

corresponding maximum likelihood estimator has been debated for forty-odd ii
years. These matters are here clarified for certain one-and two-dimensional

designs under certain simultaneous autoregressive models. Some simulation

results are also given.

The responsibility for the wording and views expressed in this descriptive
suimary lies with MC, and not with the authors of this report.
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ROLE OF THE PAPADAKIS ESTIMATOR IN
ONE- AND TWO-DIMENSIONAL FIELD TRIALS

N. R. Draper and D. Faraggi

1. INTRODUCTION

The analysis of field trials when observations in

nearby or neighboring plots are correlated has received

extensive study over a number of years. Early work was -

done by Papadakis (1937); his suggested method of model

estimation has been regarded as the standard procedure and

its consequences have been re-examined by a number of authors A

including Atkinson (1969), Bartlett (1978), Martin (1982),

Wilkinson, Eckert, Hancock and Mayo (1983); for examples .

using the Papadakis method, see Kempton and Howes (1981). -

It has been pointed out by Atkinson (1969), Bartlett (1978),

Ripley (1978, discussion to Bartlett, 1978) and Martin (1982)

that the Papadakis estimator is an approximation to a maximum

likelihood estimator. The contexts of their remarks differed

somewhat. Atkinson (1969) was discussing the one-dimensional

"plots in a line" case, following up work by Williams (1952).

Bartlett suggested iterating the Papadakis procedure in one

and two dimensions. Ripley (1978) provided a matrix expres-

sion for the maximum likelihood estimator for one and two

dimensions, and showed its equivalence to generalized least

squares. For additional discussion see Ripley (1981,

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041 and the Wisconsin Alumni Research
Foundation via the UW Graduate School.
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pp. 88-97). Martin (1982) also used a matrix formulation

and showed that Bartlett's iterative Papadakis procedure

converged to the maximum likelihood estimator in certain.5

circumstances.

The present paper considers the one-and two-dimensional

situations in matrix form. We clarify the nature of the

Papadakis estimator in general and show its relationship to

the maximum likelihood estimators arising from two types of

error correlation structure. We show further that in certain

.4 cases maximum likelihood solutions are obtainable sufficiently

* straightforwardly, so that the Papadakis estimator is not

actually needed.

In general, we assume all one-dimensional designs to be

circular in the sense that the nth plot will be supposed to

be to the left of the first plot, as would be the case if

the string of plots formed a collar on a mountain peak. A

practical approximation to such an arrangement might involve

adding additional treatments before and after the plot string,

setting the treatment of plot n in a "0 plot" and setting

the treatment of plot 1 in an "(n+l) plot". Seefor example,

'4 Dyke and Shelley (1976) or Draper and Guttman (1980).

Similarly, two-dimensional designs are assumed to be

torus designs, wrapped around in both dimensions, as assumed

by Martin (1982).

.6 .
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2. ONE DIMENSION, ONE SIDED ERROR STRUCTURE

2.1 The First Order Autoregressive Model.

We suppose, following Williams (1952) and Atkinson

,S (1969), that an experimental design consists of a string of

A adjacent plots used to examine t treatments. Each treat-

ment will occur m times. If each treatment occurs c

times adjacent to every other treatment, the design is

called a Type II(a) design (by Williams, 1952). If c = 2,

t - m + 1. Note that these designs are assumed to be circular.

We suppose a directional association exists between

errors in the following sense. Let there be n response

observations YY2 '... yn  in plot sequence from left to

.right. The assumed model is

V

ii- Y i , 0 8 +  x i ' i = 1 ,...,n s 1 , . ,1 • •1

where a denotes the effect of the sth treatment.

Furthermore

xi M Pxi-1 + i 2.1.2)

where e (c 1 ,c 2 1 ... ,)' N(0,102 )

A first order autoregressive relationship be-

-my.F e
',,,,. , Q,, ,- . .>,.;, ,. . ,. .. .. -. _. _.. .. .... .. .... .. .. .. . . . .... . . . .. , . .. . .. - ,.... .. .. .. .. .... .. . .
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tween the x's is assumed instead of the usual indepen-

dent and identically normal distribution assumption. The

joint distribution of xl,x2 , . . . ,x n is

'

f xl,x 2,... O'n)=

( ap2) x exp[C +x+ (l+p 2 )

n-1 n-i1 213I (x!)- 2P (xix+ )  ; (2.1.3)

i=2 i=l

see Koopmans (1942) and Box and Jenkins (1976, p. 276.)

The maximum likelihood estimator for p can be found in

several steps. From the derivative of the log likelihood

with respect to p we obtain

2 1 (X l - n (x2 ) (2.1.4)

which is the maximum likelihood of o2 in terms of .

Secondly, from the derivative of the log likelihood with

respect to a2  and a substitution for 02 by its maxi-

mum likelihood estimator (2.1.4) we find

V . . -* ... " ., " , ' ,\ •v . .. '.. .... .' . . -'-,-. ,, *,.'. -
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ril n-i -i-

* x+x 2 +(1+A 2) x-2 2 .. (2.1.5)n i i ii=2il

which can be solved iteratively for 0 . To find the
th

maximum likelihood estimator of the effect 
of the s

treatment as , substitute xi = Yi - as into (2.1.3);

the Jacobian is the identity matrix. This gives

--- = (1 + ) 2 (yi-61s)

- (Yi - &[i]) - 0 (2.1.6)~~[i~lJ=s i

and the maximum likelihood estimator of as  is

^w m- 0 yry Ai~

=m2 = 4 -(2.1.7)

where the w acknowledges Williams (1952).

Note that I Yi is used to denote the sum of all
tftt[il=sthe responses from the plots receiving treatment s. So
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Yi is the sum of the responses from the plots
(i±1)=s1
adjacent to the plots receiving treatment s.

2.2 The Papadakis Procedure

Papadakis (1937) suggested a sensible but somewhat

mysterious estimation procedure described by Atkinson

(1969). The corrected yield of the ith plot receiving

treatment s is defined by

Yi = yi- m (2.2.1)

ji

The concomitant variable 6i is defined as

= (yi-i + Yi+)/ 2 " (2.2.2)

The Papadakis estimator of the effect of treatment

s is then

%.%-.
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[ i =sy i  i =s

(2.2.3)

=m-y . (yi.m-l i Yi

where

n n
il 6 iYii 6!(2.2.4)

and p acknowledges Papadakis (1937).

Atkinson (1969) showed that the expectation of S

when using a large sample approximation to x. and taking

the expectation of the ratio to be the ratio of expecta-

tions is E(S) - 2p/(l+p 2). Comparison of the two esti-

mators (2.1.7) and (2.2.3) implies the Papadakis estimator

GP is an approximation to the maximum likelihood estimator
^Ww s ,with ascl in the maximum likelihood estimator corre-Gs corre

sponding to m- 1 yi in the Papadakis estimator,[i]=s_+l1
and P/(l+02) in the maximum likelihood estimator replaced

by 0/2 in the Papadakis estimator.
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2.3 The Estimators in Matrix Form

Both the MLE and the Papadakis estimator can be

written more conveniently in matrix form. Define T to

be the design matrix of size t by n whose sth  row

contains 1 in the i th column if treatment s is

applied to the ith  plot and zeroes otherwise. For

example, for the design (1,2,3,4) (2,3,1,4) (3,1,4,2), the

T matrix will be

100 00 00 001
0 1 0 0 1 0 0 0 0 0 1

T 0 0 1 0 0 1 0 0 1 0 0 .(2.3.1)
LO0 0 1 0 0 0 1 0 0 1 O

Then, with an obvious matrix and vector notation,

Y* = Y -m 1 T' T Y = ( I - m- 1 T T ) Y (2.3.2)
nxl nxl nxttxn nxl nxn nxttxn nxl

where Y* (y = (*l *)I so

that the treatment averages are m-1 TY. To get the con-

comitant vector 6 we define the neighbor-specification

matrix N of size n by n whose ith row contains 1 in

i. 

%

- ' or - %. 

' ' -
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positions j for which plot j is adjacent to plot i,

and zeroes otherwise.

In our example it will be:

0 1 0 0 0 0 0 0 0 0 0 1-

1 0 1 0 0 0 0 0 0 0 0 0

I0 1 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

N 0 0 0 0 1 0 1 0 0 0 0 0(23 )

1x2 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1

J1 0 0 0 0 0 0 0 0 0 1 0.

.11

Then 6 = NY* and the vector of Papadakis estimators is

N m 0 0 0 0 1 01 m 0T T)Y (2.3.4)

tXl

,.% .- ; ' - - .2"x.-"12 t 0.-0..0 0. 0. 1 0. . 1... 0-.. 0'-. 0.'. 0'.- . .".'_ .. -. _-..-

j 5,?1 . 0 0 0 0 0 0 1 0 1 0 00/ "", . ". " "". ""." " .""""' "" ""''-"". •-.""" ' "'.'"""'.- ""'. I
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where ap 1 2'~c~..., t) . The estimator can also

be expressed in matrix notation as a ratio of quadratic

forms:

A 2Y'(I-m -1T'T)NI-m -1T'T)Y
8= . (2.3.5)

The maximum likelihood estimator in matrix notation is

^W -1 P
a = { TY -142 (TNY -TNTI&W)

This implies

I,~*.. W -1 A-
Ot m {(I-m MYTNT#) (TY- -9TNY))

=(TVlT')- I TV-Y , (2.3.6)

where

A A 2

v I -YN.



Note that TT' = mI. Equation (2.3.6) is equivalent

to (23) of Wilkinson et al. (1983), as pointed out by

discussants to the latter, and also to (5.34) of

Ripley (1981).

It is well known that

(I - A) - 1 = I + A + A2 + A' + ... (2.3.7)

if and only if all the eigenvalues of the matrix A

are smaller than one in absolute value. We can thus

apply the above expansion to aw if all the eigen-

-lA

values of m YTNT' are less than one in absolute

value. The matrix TNT' is of basic importance in

these sorts of analyses because its (s,w) th element

is the number of times treatment s appears adjacent

to treatment w in the design. We shall later need

and define matrices of the form TN(V)T1 to express

more distant spatial relationship. For Type II(a)

designs with c - 2,

' , ."":''t " '1.' ,:lZ' ''-' . l._ %~ .l
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a b b***b

1A b a b***b

M YTNT' b b a .... b (2.3.8)

Lb b b a** a

where a =0, b = 2m Y, and has the two distinct eigen-

* values (Rao, 1973, p. 67)

A

2. a +mb = 2Y.

Both eigenvalues here are less then one in absolute value

which guarantees the convergence of the corresponding ex-

pansion. Expanding gives

Aw M-l -l 1 +m-2^ 2a ( (I+ m YTNIT+ y TNT'TNT' +---)(TY- ITNY))

JA -lA2
-m{TY-YTNY+m YTNTTY-m Y TNTT+99.}

-m 2 9'TNT'TNT'TN(I-mJ1 T'T)Y- .1 (2.3.9)

Because E(S/2) ~'Y, we see that the Papadakis estimator

A
picks the zero and first order terms in YN from the auto-

~~~~~6 * .*0* -~. . .
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regressive process, while ignoring the higher order terms.

Note also the repetitive application of the Papadakis

correction term with higher and higher power of m-1YTNT'

in the full expansion.

Bartlett (1978) suggested that the Papadakis procedure

*t should be an iterative one, i.e., the corrected yields
Y4 i =sy i  should be changed in the j th iter-

atior to y*(j) _p(J-l)= aYi to give

a 1  1 ATN(YTp(j-I))} (2.3.10)

wh eP Ap(0) - m- -p(l)

where T'Y so that a is (2.3.4). Martin

(1982) showed that indeed this procedure converges to the

maximum likelihood estimator for Type II(a) designs, for
A fixed. Convergence occurs because the Papadakis ex-

pression (2.3.4) consists of a truncated portion of a

convergent expansion (2.3.9) of the maximum likelihood

estimator (2.3.6).

Some useful neighbor balanced designs suggested by

Williams (1952) are given in Appendix 1.

%; l4~ : ~ ~ *.f.~~
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2.4 An Exact Solution

In fact, for Type II(a) designs, iterative use of

the approximate Papadakis formula is unnecessary. The

(I-m YTNT') matrix has a form similar to (2.3.8) where,

for example, for type II(a) designs with c = 2,

a = 1, b = -2m-l1 . (2.4.1)

This allows it to be inverted as a patterned matrix

(Rao, 1973, p. 67). In general, the inverse of such a

pattern matrix (see Rao, 1973, p. 67) is

a' b' b' ...... b

b' a' b' • b

b' b' a' * * b'

* . (2.4.2)

b' b' b' ....... a'

nxn

where

a+(n-2)b
a t  [a+ (n-l) b[a-b]

"f -b (2.4.3)
[a+(n-l)bl[a-b]

1.1. % % % % .. % % 14. % % _
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This provides the exact solution to 2.3.6.

A2 l- Oy(u -l) 1~z
9W MI-2Y]H1+29/A] (I+ -E-)1'NT'1(T'-INY}. (2.4.4)

Substitution of this in Equation (2.1.5) provides a

single equation to solve for ^, e.g., via the Newton-

Raphson method. The solution is then used in (2.4.4).

(The existence of this explicit solution method seems not

to have been noted by previous authors.)

'a.

.= ' a - ' ' % ' , :- " . , .. ",;...-< -. r, .- -,. ,-.h.a.. . , .-.- .\ .. . , .-. .-. ., , , . .
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3. ONE DIMENSION, TWO-SIDED ERROR STRUCTURE

3.1 The Simultaneous Autoregressive Model

If we apply the one-sided error structure approach

of Section 2 to the two dimensional case, geometrical im-

balance occurs. This can be rectified by a two-sided error

structure assumption, as we shall discuss in Section 4.

Once this point is appreciated, it is then natural to

return to the one-dimensional case and consider the con-

sequences of a two-sided error structure assumption. We

thus assume (following Besag, 1974, simultaneous auto-

regressive model, p. 201) that

Yi = Is + xi i = l,,...,n 8 1,...,t (3.1.1)

where, now,

xi =P(xil + xi+ 1 ) + Ci (3.1.2)

with c N(O,Ia2 ) . The likelihood function is (Besag,

1974, p. 201, Equation 4.13 taking V = 0),

% %.-



1.7

1%17

(2,a)n2B exp{- (2a 2) (X'B'BX)1 (3.1.3)

where

B = I - pN

- (3.1.4)

X - Y -TO

and N, T, Y and a are defined as before. The maximum

likelihood estimator for a is

a a (TV TO)- TV- Y, (3.1.5)

where

V-1 (I N) 2 
.(3.1.6)

Note that, since TV - ml, (3.1.5) can be rewritten as

GQ=m-1{Ii'T(0_22T p-TI(0-0N2 y (3.1.7)

and since

N2= N ()+ 21, (3.1.8)

% %. V%--
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where N is the "lag two" neighbor-specification ma-

. th
trix whose 1 row contains 1 in positions j for which

plot j is adjacent but one to plot i and zeroes

otherwise. An alternative form is

M I mT (22 N 2))T] T

2- ('__ -N 2 ) ) (3.1.9)1+ 1+2

3.2 The Modified Papadakis Estimator

The expansion of the inverse matrix [I-m-iT(2 N-2N2)

T']1  in (3.1.7) converges if and only if all the eigen-

values of m-T(2 N- 2N2)T ' are less then one in absolute

value. For example, for designs of Type III (Williams,

1952) which are obtained by imposing simultaneously two

conditions on the design:

(i) That each treatment should occur equally

often adjacent to every other treatment.

(ii) That each treatment should occur equally

often adjacent but one to every other

treatment.

-. . . .- .- •• . * \ * . -A.n-..- . -. ' - - ., . . ,. - ..-. • ..-.- .

a , ,%%% ,%%%%,% % %%% •%,% %•, ,, • .-. , ,.,
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For example, the design

(1,2,3,4) (2,1,3,4) (1,3,2,4) (3.2.1)

has each treatment occurring twice adjacent to every other

treatment, and twice adjacent but one to every other

treatment assuming the design is circular, that is the

final 4 is adjacent to the initial 1. The matrix

m-T(2PN-P2N2)T ' is of form (2.3.8) with

a = -2 ,  b = (4 -2p 2 )/m. (3.2.2)

Again, such a matrix has two distinct eigenvalues that

can be found explicitly. For Type III designs, they are:

(i) a + mb = -4p2 + 4",
(3.2.3)

(ii) a - b = -2 2 - (4-P2)/m

It is easy to check that if 0 satisfies

(1-2h)/2 < 0 < {[l+m(m-l)/2] - l}/(m-l) , (3.2.4)

then both eigenvalues are between -1 and 1, so that the

expansion converges. Expanding (3.1.7) gives

% % -%%
'r,, ., ' .TE. ' " T', ," ,,,', ." . ",.'.,.'-'.:. . '.,3... '..",_. •... .... '. ., ,,..M .,,,",' "•"% ." - ","
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L= m {TY-T(20N-p 2 N2 ) (I-m- 1 'T)Y 20

4t
"'-T -(20N_02 N 2)T'T(20N-02 N2 ) (I-m -''T)Y }. (3.2.5)

We now define the "modified Papadakis estimator" as the

terms of zero and first order in Q = 2pN-p 2 N 2 in (3.2.5),

namely

i MP = m-ITYTI20N_ N) (i ITTY) ( 3.2.6)

• In fact, because T(I-m- ITIT) = 0 we can simply replace

SN2 by N ( 2 ) in (3.2.6) to get

^1 m {TY-T(20N-ON 2) (I-m-T'T)Y. (3.2.7)

This form suggests that we should correct the mean not

only by the effect of the nearest neighboring plots but

also by the effect of the "lag two" neighboring plots

with appropriate coefficients, as shown in Table 1.

i-2 i-1 i i+l i+2

Table 1. Pattern of residual correction to treat-
ment averages for the one dimention "two
sided" error structure.

p %4 j~..w,.P P Y ~ S ~ : .~j~
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This estimator, (3.2.7), if applied iteratively in designs

for which the matrix expansion is valid, converges for

fixed to the maximum likelihood estimator (3.1.7).
"- th

In the j iteration,

(MP(j) =m-I{TYT(2NN a (3.2.8)

AZ4P(O) ism MP(l)
where a is m-ITY; thus 1 is (3.2.7).

3.3 An Exact Solution

In fact, we do not need to iterate our modified

Papadakis estimator for Type III designs because an ex-

plicit solution can be obtained (below), but it does pro-

vide an appropriate parallel to the ordinary Papadakis

estimator, for the present case. For Type III designs

with c - 2, TV-1T' has the same form as (2.3.8) with

a = m(l+202 ), b = 2(20 _2). (3.3.1)

4 Using (2.4.2) and (2.4.3), (3.1.5) becomes

.1. e ,. % -.

4,' 
. ," .' - . . ,. ., . , ,, . ., .. . , . . . ., . . ' . . " " ... -,', - - ' . ., " .- ' .

.,' , . , _ _ .., , o . -, .. _ .., , ... ..o .. .. ... ...... ..... ., . .. ., .., ...
IL .,' ' " ' A "k"" " ' '- .,,.... ,, , > .. " , ..-L -.-...-.....-. ,""''''' " .-. '"; , " ."." ' .. .''- .; ,"
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2 2(m- 1) (2~~2

=~~ m 1 1 - (1+2 2 )

(1+202) 1r +(~~2 1
* J+p 1 -(1+2 0) + (1i2 02

- I + TNT']
'_+M(1+2_^7) -2 (m-1) 0(2-0)

x TrII-(20N-0 2 N 2 )]Y} (3.3.2)

-~Note that TN (2T' is a t by t matrix whose (s,w) t

element is the number of times treatment s appears adja-

cent but one to treatment w in the design.

3.4 Maximum Likelihood Estimator for p

#4 The maximum likelihood equation for p is obtained

in several stages. We first find the maximum likelihood

estimator for 02,

82 - (Y-T_ _____ _____ ____2 (3.4.1)

then we differentiate the logarithm of Equation (3.1.3)

with respect to p and set the result equal to zero

*%V V
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to give

n (Y-T'a) ' (-2N+20N') (Y-T') + [I-pN/app=0 -0. (3.4.2)

II

The second term on the left hand side of (3.4.2) has an

interesting, continued fraction form. First of all the

term is -2n times the (i,i+l) element of (I-ON)- . This
is easy to observe using the fact that the derivative of

determinant of a matrix is the sum of the determinants of

the original matrix differentiated column by column. Here

1 -p 0 . . . 0 0 -p
,4 -p 1 -p .. 0 0 0

0 -p 1 0 0 0

4-P

, 0 0 • . • 1 -P 0

-A 0 0 0 ...- p 1 -p

-p 0 0 * 0 -p 1

. l.-

. , ,,,, . .. h , , . .,.,. ..-- .'.:. - .0" • • -. ....' -...- . - . . -.- . . " - - -
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0 -p 0 *** 0 0 -P

-1 1 -p * C0 0 0

0 p 1 * 0 0 0

0 0 0 1 1-p 0

0 0 0 '''P 1 -p

-1 0 0 * 0 -P 1

11 0 ***0 0 -p

-p 0 -p ** 0 0 0

0 -1 1 'C* 0 0 0

0 0 0 -P 0

+ 0 0 0 P 1 0 P

* 0 0 0 0 -P 1

0 0P 0 0 0 -P -

0P 0 01 0 0 0p1 -

-p 0 0 0 0 0 0 

1 -p 0 -P 0 0 -

0 -p 0 -P 1

0P 0 0 0 -p 0
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1 -P 0 . 0 0 -1

-p 1 -p • . • 0 0 0

0 -p 1 . . • 0 0 0

0"' + . . ... .. (3.4.3)

0 0 0 • • • -p 0

0 0 0 .. -p 1 -1
-p 0 0 • * 0 -p 0

Thus, the sum of these determinants is -2n times the co-

factor of the (i,i+l) element in I-pN and

[jII-pNI/3p]p=A (3.4.4)

is -2n times the (i,i+l) element of (I-pN) - . Now

a b c d *e* e d c b

b a b c . .*. f e d c

c b a b . . . g f e d

d c b a• j g f e

(I- ON) - = . . . . . . . . . (3.4.5)

e f g h• a b c d

d e f g . .. b a b c

c d e f . .. c b a b

b c d e • d c b a

5-0 -
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For n odd, the (i,i+l) element of (I- N)-  takes a form

which we illustrate for n = 11:

-v

+ 2 2 1

(3.4.6)

02

1-1 pL 1 - '

In general, there are (n-3) ,2 terms" in the con-

tinued fraction. For n even, we illustrate for n = 12,

for which the required expression is

- + 2 0 2  _ 1

1 - p(3.4.7)

'.2

'.2

In general, there are (n-4) ,,02 terms" in the con-

tinued fraction, not counting the final 02 in the de-

nominator 1-2 2 . Thus, an explicit solution is obtained

..... , • , ,I ,4_,.,, .. ,.., , .-. ,. , ,, -. - - . -. , .-

P A % -% % -
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by substituting the a in Equation (3.3.4)into Equation

(3.4.2 solving for , for example, using the Newton-

Raphson method, and then obtaining & from (3.3.4) once

is found. From the practical point of view, however,

examination of the likelihood over an interval of p ,

using the solution for & in terms of is easier than

solving explicitly for .

(Note that if all values in the continued

fractions are replaced by zeros, we obtain 0 , which

thus provides an approximate solution.)

3.5 Least Squares Solution for p

The least squares solution for p is the 0 that

minimizes the weighted residual sum of squares. This

turns out to be

LS (Y-T QL) N(Y-T'aLS)

,LS 2y ALS

(YT,&LS) N2 (yTLS) (3.5.1)

which is similar to (2.3.5) with m- TY, the vector of

treatment averages, replaced by the least squares esti-

mator of a. The latter is of form identical to a,

the maximum likelihood solution, but with the least

squares 0 inserted.

, . .. . . ' " - - ' .,,p ' , " . , , .% -' \ -,' , , . ' ' . . . . ' . , . - . .:. rc . , . 4 .4-* ~ 4  
. ' . .'~ * - . -

%A, 4
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4. TWO DIMENSIONS, "ONE-SIDED" ERROR STRUCTURE

The natural extension of the one dimension, first

order, one-sided autoregressive model to two dimensions

is to consider the model

41

Yi c2I + x. il, .c j=l,...,r

s l..t? (4.1)

where

x = P(X.-~j +xij + Ci (4.2)

and c N(O,Ia)* Let cr = n, the total number of

observations. The likelihood function is

(2.C2) n/2r c
(2w2)/e{(202)-1 y 'X.. p(X.

j-l i__l 1 -~ ,

21Vn2e {(22-l 2 r c

(2irfa ) ({2c1 J+2p2  1
j=l i7-l1,

r c r c
-2p ~ X. .x i l- 2p x LX'3 x .l

j=l i=l 1 i~- j=l i-I l 2*,

+ 2p2 Iiliii ij- 1x +~ Ilx 2I
j=J. i-l 1-,j irj- + ~ 2

- ~P-4 *g J h :~ *~~4~ b /

bmamR~il 0-
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c-"-1 c
+ P2 ~xi2 + P2  x + P 2 2

+ p 1 X2  . . (4.3)
j=l 0, 3

TO obtain the maximum likelihood estimator for a we

first replace the xij s in (4.3) by Y ij s- The

appropriate Jacobian is the identity matrix. The maxi-

mum likelihood estimator is:4'

+l y (Yi Ot +s(i - sif[ j 1-jAs

+ T+202 (Yij- aS)') (4.4)

+l+2 2 ci+1 ]= j-lis(4 )

.i where I is the number of times treatment s was

applied, i.e., the maximum likelihood estimator as will

correct the average of all the yields from the plots re-

ceiving treatment s, by the residual effects of the

neighboring plots (i-l,j), (i+l,j), (i,j-l), (i,j+l)

with coefficient - 0/[t(l+202)] (plots marked with

in Table 2);

4.P
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and by those of plots (i-l,j+l) and (i+l,j-1) with

-ft coefficient 12/[t(l+2 2)] (plots marked with x); how-

ever plots (i-l,j-l) and (i+l,j+l) are ignored. Equation

(4.4) can be rewritten in matrix form as

p.. l4- i I - 1-T N- i+--l2 N Ti-

2 (12
x T [I - + - 02 2 N (1 2  (4.5)

where T, N, Y, a defined as before and N (12) is the

$1 n by n "semi diagonal neighboring" matrix symbolized by

x in Table 2.

i-i i i+1

j-1 x

j •0

j+l x

Table 2. Pattern of residuals corrections

to treatment averages for the two-
dimensi.ns "one-sided" error
structure.4,

,',. ",',,b,_, - -- ',•. .•- -,, , .• - . . .

4',,. . ,,'. ., ,. .. -. ,,... , . , .'.,,.- ... . . . . . . . . , , . , ., ., - , - .- - . .,
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If it were thought reasonable that plots (i-l,j-l),

(i-l,j+l), (i+l,j-l), (i+l,j+l) should have the same

influence on plot (i,j), this "one-sided" extension

would not be appropriate. However, one blocking factor

could be time or influences such as prevailing wind

direction or slope of the ground may make a 'one-sided'

or 'semi-one-sided' model appropriate in some contexts.

Because of its similarity to the work of Section 5, but

with a redefinition of the N( 1 2 ) matrix, we do not

deal further with this case here.

.5s:

"% -" "

-J --f. ° • . % % ° • " . " ° % ° ° ° o% " • • " o - • % % .' ° . * . . - - ° %
l l l i i i IIJii-.l[ n~ J Iliil i m . .. . . . :. . . .: " - " "
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5. TWO DIMENSIONS, "TWO-SIDED" ERROR STRUCTURE

5.1 The Simultaneous Autoregressive Model

Consider a lattice consisting of a finite set of

sites, each site having associated with it a univariate

random variable. To quote Besag (1974, p. 192): "In

most ecological applications, the sites will represent

points or regions in the Euclidean plane and will often

be subject to a rigid lattice structure. For example,

Cochran (1936) discussed the incidence of spotted wilt

over a rectangular array of tomato plants. The disease

is transmitted by insects and, after an initial period

of time, we should expect to observe clusters of in-

fected plants." We assume the model:

Yij =( s +x iji i= 1,2,...,C j =

S=(5.1.1)

where

x.j = p(x j +i, j +x i ,j _  + xij+) + cj. (5.1.2)

We assume that £ - N(O,Ia 2 ),

.V
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where c = (cill,21,C31, .,Ccl, 1 2 , ..eCcr) If we set

n = rc, the likelihood function is

j-=l ) i 1 -1,j i+,j i,j-l i,j+l

(r2 -n/2 2- 2)c-i r-l2

c-1 -1 -1 -1r-
, (2 oz ) - n/ 2 ~exp{ - (2o)I[l+4p2) Y x.

i=2 j=2

c-1 r-1 c-1 r-1+ 4p2 X jx 1+ p2  x. x

i=2 j=2 i2 j2

c-1 r-1 c-1 r-1

+4p YI I X.. x.-1 ~4p 2  7 I513
412 i=2 j=2 1. 1+3, i4 2 j=2 ' j=2X,j+l

c-i r-l c-i r-l

The maximum likelihood estimator of a iss

Ai 20I 72--

asj+~ I Y** j.[i,']=s Yij 1+4p [i±l]=s [j±l]=s

+ 2 (Yij-ij)

+ i-- [i:;l]=s [j±l]=

+ 02 (ya.-ci.) (5.1.4)
[i2=s [j±2]=s )

IN

-S. -•

-w- . -j~j ,- ,.' "'._'L,%. "" " '." .' - % -'." ",.- •" : . .. . -~ s " " .L. '%'.-". '.-' .'... .. t . . , . ,' .
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where I is the number of times treatment s was

applied. Here, the average of all the plots receiving

treatment s will be corrected for the residual effects

of the neighboring plots (i-1,.j), (i+l,j), (i,j-l), (i,j+l)

with coefficient - 20/[L(1+4 2) (shown as - in Table

3); for those of plots (i-l,j-l), (i-l,j+l), (i+l,j-l),

(i+l,j+l) with coefficient 202/[L(1+4 02 )] (shown as x);

and for those of plots (i-2,j), (i+2,j), (i,j-2), (i,j+2)

2 with coefficient 02/[Z(1+40 2)] (shown as *

i-2 i-l i i+l i+2

j-2

j-lx * x

j+l x * x

Table 3. Pattern of residuals corrections to
treatment averages for the two-
dimensional, "two-sided" error
structure.

'e J
%

%. ~ *5 44~:.c~:~K::.:
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We now recast Equation (5.1.4) into matrix form. The

likelihood function and the maximum likelihood estimator

for a are exactly the forms of Equations (3.1.3) and

(3.1.5), but with redefined N and T . For example,

a- for the 5 x 5 knight's move Latin square given by

1 2 3 4 5
4 5 1 2 3

2 3 4 5 1 (5.1.5)

5 1 2 3 4

3 4 5 1 2

we have

T 0 001 00 00 00 10 10 00 0 00 10 10 000 (5.1.6)
5x25 00 01 0 10 0000 0 100 0 00 0 10 100 0

L0 0 00 1 01 000 0 00 101 00 0 00 0 1 0

The n by n neighbor-specification matrix N Is now

different from that of Chapters 2 and 3. Here

N = Nc ® I + Ic ® N* (5.1.7)
25x25 5x x 5x5 5x5
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where

0 1 0 0 1

1 0 1 0 0

N N = 0 1 0 1 0 (5.1.8)r
5 X50 0 1  0 1

L1 0 0 1 0J

and ® is the Kronecker product. In general, N and
r

Nc  are the r by r and c by c neighbor-specifica-

tion matrices for rows and columns respectively. We can

write

N = N ( 2 ) + 2N (12) + 41 (5.1.9)

where, with a slight change of notation from the one-

dimensional case, which offers no "diagonal plots", N(
12 )

is the "diagonal neighbor-specification" matrix, symbol-

ized by x in Table 3, and N(2) is the "lag two"

neighbor-specification matrix, symbolized by in Table

3. The - symbolizes N. Then,

V- = (I-ONI 2  (1+402)I- 2N+2 2Nl 2 ) + 2N(2 ). (5.1.10)

-- mR
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We thus obtain, from (3.1.5) and (5.1.10),

A 1 [_9-3)TT2 (12) _ 2 -

a = {[-i (2P N N + N T T

2_ 2 2 (12) _2 (2)
X - 2 N- N N ,(5.1.11)

which is identical to (5. 1. 4).

5.2 The Modified Papadakis Estimator

The maximum likelihood estimator can be expanded if
and only if all the eigenvalues of Z -T(20N- 2N )TI are

smaller than one in absolute value. For example, for two

dimensional designs derived by making a row by row cyclic

permutation mt times of the Type III designs of Williams

(1952, p. 159), C-1T(20N-0 N2)T' is a pattern matrix of

the form of (2.3.8) with

a =- ,
(5.2.1)

b - 8 (P- )/m

with the two distinct eigenvalues

, %.-
N, , - . , . .' . ', , . . .• . ,-° - ,...- .. . , . . .. . .-. ,,. . .% ,
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(i) + nb = 8~2 B(~~ 2 )(5.2.2)

(ii a- b _ 8^2 _ 8(^_^ 2 )/M

If satisfies

(1-212)/4 < < {1mm1/11J{(l),(5.2.3)

the expansion is valid and takes the form

A = t {TyT(20N_02N2) (- 1T'T)Y

9._T T(20N-02 N 2)T'T(20N_02 N2) (I-L 1T'T)Y- ** ) (5.2.4)

Deletion of all terms in 0 whose powers exceed one gives

an estimator of the Papadakis type for the two dimensional

case

C I TY - 20TN(I-C'TIT)Y} (5.2.5)

which may be compared with (2.3.4). If we retain terms

of order zero and one in Q - 20N -0 2 N2, so that cor-

rections for diagonal and "lag two" plots are included,

we can define a "modified Papadakis estimator":
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-1{TY T(20N- 02N2) (I-1 T'TIY} (5.2.6)

and we achieve the same phenomena as in the one dimen-

sional case of reproducing the term C'1T(2N- 02N2)T'

again and again. If Bartlett's (1978) suggestion of

iterating is followed for the "modified Papadakis esti-

mator" (5.2.6), convergence to the maximum likeli-

hood estimator occurs, for 0 fixed, for designs for

which the matrix expansion is valid. Because T(I-m-1 T'T)=

0, we can also write this "modified Papadakis estimator"

in the form

I -I{Ty-T 120N-202N1(12)_0 2N (2 ) ) (I-C-YT)Y) ( 5.2.7 )

which directly reflects the pattern of Table 3.

5.3 An Exact Solution

Iteration is not actually needed for designs of the

type described above, however. As in the one-dimensional

case, we can again get an explicit solution for cyclically

permuted (t times, or mt times, with appropriate

bordering treatments, different for the two cases) Type

III designs without resorting to the Papadakis estimator,

iNi
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by using pattern results to invert the matrix TV- T'

that has the form of (2.3.8) with

a = m2 (m+l) (1+8 2 ),

b = -m(m+l) (8-802) . (5.3.1)

For example, the solution for Type III designs cyclically

permuted mt times is

"1 I (m-l) (80-802)
1 m (1+802 )

He (Ml)(+802)[1 82-801 80-80 2
L Ti+J m(l+80)J

(5.3.2)

+ m(m+l)[m(l+80')-(m-l) (80-8o) ]TNT] T[-(2N- 2N) Y.

Note that TN (12)T' is a t by t matrix whose (s,w)th

element is the number of times treatment s appears on

the diagonal of treatment w in the design, and TN(2 )T'

is a t by t matrix whose (s,w) element is the number of

%* % %
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times treatment s appears adjacent but one to treatment

w in the design.

5.4 Maximum Likelihood Estimator for p

The maximum likelihood equation for is obtained

as in section (3.4)(pp. 32-35) with symbols appropriately

redefined for two dimensions. We now need -4n times the

(i,i+l) element of B- = (I-ON)- 1 .  Because of the

form of B, B-I will have a special form. The first

column of B-1 , b1 , say, consists of a small subset
-l

containing q, say, elements which recur throughout B

The n equations Bb1 = (l,0,0,...,O)' reduce to q

equations B*b* = (l,0,0,...,O)' where B* is qxq and

both b* and the right-hand-side are qxl vectors. The

element we want is then (B*) j1  where j is the position

of the required element in b*, this position being our

arbitrary choice. The value of q is

RU
q = , (5.4.1)

i=l

where

RU = RU{ (ni+ )) (5.4.2)

A - ' " -
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and RU(M) means "round up 6 to the next integer if

it is not already an integer". A specific example for

such a procedure is given in Appendix 2. As before, we

now solve iteratively for p in Equation (5.1.11), or

(5.3.2).

The least squares solution for p is similar to

(3.5.1) with I replacing m, and with N appropriately

redefined.

%

,I
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6. SIMULATION STUDY

A simulation study to compare the different estima-

tors described in Chapters 2, 3, and 5 was conducted both

for one and two dimensions.

6.1 One Dimension

In one dimension, four estimation procedures were

compared:

(i) The maximum likelihood estimator for the

simultaneous autoregressive model (Section

3.1).

*(ii) The modified Papadakis estimator (Section

3.2).

(iii) The maximum likelihood estimator for the

first order autoregressive model (Section

2.1).

(iv) The Papadakis estimator (section 2.2).

The design assumed was the Type III design

(1,2,3,4)(2,1,3,4)(1,3,2,4). (6.1.1)

The observations were generated as follows:

~~~ % % %L t . .< -:<- .: :-. .-.- -.:' -: .:.: - .-
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C)The model assumed was

~.1Y -TV~ + X, (6.1.2)

where

X - PNX + c

So £ - IpN) X = X (I -pN) e.

(2) Using generated normal random variables with

I zero mean and three different standard deviations

(0.01,0.1,1) X was found for fixed p

(3) On the X was superimposed a treatment effect

as required by the design (6.1. 1) to get the

observations Y.

(4) The above scheme was used to construct twenty

data sets for various combinations of p

and a

* .. . . 5 . J
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The four different estimation procedures were then

applied to all 20 data sets.

In Table 4, the maximum likelihood estimator for

p is given as well as the weighted residuals sum of

squares for the different models and methods. Note

that, for the modified Papadakis estimator, p was de-

rived from the likelihood function of the simultaneous

autoregressive model with the modified Papadakis esti-

q mator for a inserted; this explains the difference

in the P for the maximum likelihood estimator and the
A

p for the modified Papadakis estimator. The weighted

residuals sum of squares was calculated as

(Y - T')'V(Y - T') (6.1.3)
4

where

(1) V 1  (I - AN) 2  for the estimator from

the simultaneous autore-

gressive model.

(2) V-i = (I - $N)2  for the modified Papadakis

estimator.

.1*0-

%s:,/. ., ,.. . .-..- -' ..-" .-'...................-.......-......-....-..--....-.."....-".....".....- -"...
W'l~f".r f q= . . • m *. . . . . . . . . ..". .".-. .".-."".-."-. . . .., ", '." . - " ," '-.- '-" "- • " '
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(3) V = I - YN for the estimation from the

* s -. first order autoregressive

model.

(4) V-i I- ION for the Papadakis estimator.

We observe, from Table 4, that overall the simul-

taneous autoregressive model does better, as might be

expected. Only for certain p values, as tabulated,

do the other methods provide close estimates of P.

The weighted residual sum of squares is smallest for

the simultaneous autoregressive model everywhere ex-

cept for simulation 7, and 19 where the modified

Papadakis estimator is slightly better.

* , . ,.*.d., ., * .,. . ,.... .. .,.. .
... ...~~ ~ ~~ ~~~~ -r ' , . .."> . . ... , . .,. ,,. .. . .,,,,,.,..J , .,,,,'. -.. . . .
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6.2 Two Dimensions

For two dimensions, three estimators were compared

(i) The maximum likelihood estimator from the

simultaneous autoregressive model (Section

~5.1).

(ii) The modified Papadakis estimator (Section

5.2).

(iii) The extension of the Papadakis estimator

into two dimensions (Section 5.2).

The design used was (6.1.1) row by row cyclically

permuted 12 times. Thirteen different data sets were

generated in a manner similar to that described for the

one dimensional case. Table 5 is constructed in the

same manner as was Table 4 for the one dimensional case,

with the obvious extension into two dimensions.

Table 5 shows the same characteristics for two

dimensions that Table 4 showed for one dimension ex-

cept that the comparison flatters the simultaneous auto-

regressive model even more. Note that the data in

Table 5 involves 144 observations, compared with the

12 used in Table 4.

** % . ***
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7. REMARK

Expansion of the MLE equations for any given model

set-up may or may not be valid. If it is, the "zero and

first order" terms provide an appropriate Papadakis-type

estimator for the problem studied, and iteration on this

estimator converges to the MLE. Thus the point made by

Wilkinson et al. (1983) that the iterated Papadakis

estimator will provide a positively biased treatment

F-ratio is puzzling. A possible explanation is that the

Papadakis-type estimators used by Wilkinson et al. (1983)

may not be the appropriate Papadakis-type estimator pro-

vided by the first term in a valid matrix expansion under

the model assumed. Alternatively, such an expansion may

*1 not be valid. These issues appear to need further

exploration.

~%1
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Appendix 1. Some Useful One and Two Dimensional

Neighbor Balanced Designs Reproduced

-I from Williams 1952 and Freeman 1979.

(See Section 2.3)

One Dimension: Type 11(a) Designs with c =2

(Williams 1952).

In Type 11(a) designs, each treatment occurs n

times and equally often, c times, say, next to every

other treatment.

m = 4 (1,2,3,4,5) (3,4,1,5,2) (4,.5,3,1,2) (3,1,4,2,5)

m = 5 (1, 2, 3,4, 5,6) (2,5,3,6,4,1) (5, 3,1,6,4,2)-(5,1,6,3,2,4)

* (311,4,5,6,2)

m = 6 (1,2,3,4,5,6,7) (5,3,6,4,7,2,1) (4,2,5,1,6,3,7)

(11,3,5,4,7,6,2) (5,6,4,3,2,7,1) (6,2,4,1,5,7,3)

m = 7 (l,2,3,4,5.6,7,8)(6,4,2,5,1,3,8,7)(5,3,6,2,7,4,8,1)

(7,3,4,1,6,5,8,2) (6,3,7,4,8,1,2,5)

(3,2,4,5,8,6,7,1) (6,4,1, 3,8, 2,7,5)

%
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One Dimension: TvPe III DesiQns with c = 2

.(Williams 1952).

Type III designs satisfy the condition of Type II(a)

designs; also each treatment occurs-equally often adja-

cent but one to every other treatment.

m = 2 (1,2,3) (1,2,3)

m = 3 (1,2,3,4,) (2,1,3,4) (1,3,2,4)

m = 4 (1,2,3,4,5) (2,4,1,5,3) (1,4,5,3,2) (5,1,2,4,3)

Two Dimensions: Complete Latin Squares

(Freeman 1979).

Complete Latin squares are designed such that any

two treatments occur next to each other once in a row

and once in a column. (Note that the designs are not

assumed to be torus designs.)

1 2 3 4

3 1 4 2
m= 4

2 4 1 3

4 3 2 1

~~~~J .6%~ ~



56

1 2 3 4 5 6

3 1 5 2 6 4

2 4 1 6 3 5

m 65 3 6 1 4 2

4 6 2 5 1 3

6 5 4 3 2 1

1 2 3 4 5 6 7 8

2 7 1 8 3 5 4 6

3 1 5 7 6 8 2 4

4 8 7 5 2 1 6 3

5 3 6 2 8 4 1 7

6 5 8 1 4 7 3 2

7 4 2 6 1 3 8 5

8 6 4 3 7 2 5 1

%~~ N ',J
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Appendix 2. An Example of the Derivation of the

Maximum Likelihood Estimator for p.

(See Section 5.4)

Consider the 5 by 5 Latin square:

1 2 3 4 5

2 3 4 5 1.

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

R I SI T I T S~
at -- 1- -4 - -I--I- -

S RI S IT I T

25x25 -_I- -I- -I- -I-

T I T I SI R I S
-- -1- -- -I- -

LS I T~ I T S jR
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where

a b c cb

b ab c c

cc b ab

bccbaba

bccbae

db deee

Sed bddee

ecef fef

T f e c e f

f f fe ce
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The 25.equations Bb 1 =(1010o,...,0)' now reduce to

q =6 equations B*b* = (1,0,0,0,0,0)' where
6x6 6x~6

1- 4^p 0 0 0 0

-P 1 -P - 0 0

B* 0 - P l-p 0 -2p^ 0

6x6 0 - 2 P 0 1 -2p' 0

-A 
%

0 0 -P - 1-P -P

0 0 0 0 -21-20

and b* =(arb,cd,e,f)'. We need only to solve for

the portion of the solution involving e2-ement b of

b*.

.5
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